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Abstract

In large industrial control systems such as the ones installed at CERN, one of the main issues is the
ability to verify the correct behaviour of the Programmable Logic Controller (PLC) programs. While
manual and automated testing can achieve good results, some obvious problems remain unsolved
such as the difficulty to check safety or liveness properties. This paper proposes a general method-
ology and a tool to verify PLC programs by automatically generating formal models for different
model checkers out of ST code. The proposed methodology defines an automata-based formalism
used as intermediate model (IM) to transform PLC programs written in ST language into different
formal models for verification purposes. A tool based on Xtext has been implemented that automat-
ically generates models for the NuSMV and UPPAAL model checkers and the BIP framework.
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1 Introduction

CERN, the European Organization for Nuclear Research, operates a wide set of particle accelerators
which rely on critical industrial control systems such as cooling, ventilation, vacuum or cryogenics for
the superconducting magnets. These industrial systems are controlled by PLCs (Programmable Logic
Controllers) which are themselves programmed in ST (Structured Text) as defined by the IEC 61131-3
standard [17].

One of the main issues of PLC programming is the lack of modern software engineering best practices
to guarantee the intended behaviour of the system. While standards such as IEC 61508 [18] give some
guidelines and good practices, producing high quality code remains a challenging task. Manual and
automated testing are widely-used techniques to test PLC programs and guaranteeing correct behaviour.
Even if good results have been achieved using these techniques, not all the problems can be solved. One
of them is the difficulty to check safety or liveness properties, e.g. ensuring a forbidden output value
combination should never occur.

Formal verification, and more precisely model checking, appears as an adequate technique to guarantee
the behaviour of embedded systems in general and PLC programs in particular (c.f. Table 1). However,
this technique is still not widely used in industry for three main reasons:

1. it requires a significant effort and an extensive knowledge of the underlying model checker to build
the right formal model;

2. it appears that each model checker has its own advantages and disadvantages, which requires
ideally to create several formal models to completely validate a single program;

3. real-life systems are generally too large to be automatically analysed by existing model checkers
and require reduction techniques to be applied.

In this paper, we propose a general methodology to verify PLC programs by automatically generating
formal models for different model checkers out of ST code. Our goal is to perform automatic verifica-
tion of complex properties coming from real design of these PLC programs. These requirements can be
expressed using Computation Tree Logic (CTL) or Lineal Temporal Logic (LTL) expressions. The pro-
posed methodology defines an automata-based formalism used as intermediate model (IM) to transform
PLC programs written in ST code into different formal models for verification purposes. The transform-
ation is done in two steps: first performing a transformation from the ST code into the IM; and then
translating the IM into formal models used as inputs by the model checkers. The IM is an independent
representation of the ST code, on which reduction and abstraction techniques can be applied to produce
simplified models, manageable by the model checkers in terms of state space. In addition, an automatic
generation tool has been developed to implement this methodology. This generation tool hides the diffi-
culty of creating the models out of PLC programs to the control engineers, and allows to perform formal
verification using different model checkers.

Related work. While other work have been carried out in the past to apply formal verification to
PLC programs, c.f. Table 1, it usually does not address programs written in ST code [4, 22, 6, 7, 2, 8,
19], also they do not provide reduction solutions or they impose strict limitations. Only a few works
targeting ST code verification can be found in the literature [16, 21, 20]. However, they either impose
restrictions on the ST code such that the approach is inapplicable to real-life systems [16] (e.g. only
Boolean variables can be used, or loops are not allowed), or the requirement specifications are limited
to assertions due to the underlying methodology [21, 20]. Finally, all the works found in literature
target a specific verification tool, and perform transformations for only one type of formal models. The
methodology proposed in this paper does not restrict the expressiveness of the ST language allowing
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Table 1: Related work

Reference Input lang. Verifier Req. language

[4] SFC Cadence SMV CTL

[22] SFC UPPAAL CTL subset

[4] timed SFC UPPAAL CTL subset

[6] SFC, IL Coq theorems

[7] SFC, FBD BIP —

[2] FBD PetriDotNet CTL

[8] IL Cadence SMV LTL

[19]1 IL UPPAAL CTL subset

[21, 20] ST Coq2 assertions

[16]3 ST NuSMV —
1 Only Boolean variables are permitted.
2 The proposed approach is to convert the ST code into ANSI

C first, then translate it to the input of the Coq theorem
prover using the Why framework. The verification is done
by Coq.

3 The following limitations apply: only Boolean variables, no
iteration statements. The method can be applied for LD and
IL too, but it is not presented in [16].

the use wide range of data types (e.g. boolean, integer, float or compound types) or PLC function
and function blocks. Also, it supports producing models for different verification tools. In addition,
it supports requirement specifications expressed in CTL or LTL, allowing the verification of complex
properties.

The rest of the paper is structured as follows: Section 2 describes and justifies the general aspects of the
proposed methodology. Section 3 defines the automata-based formalism used as IM and its semantics.
The transformation from ST code to the IM is presented in Section 4. Section 5 gives some examples of
the transformation rules from the IM to the input language of NuSMV model checker. Section 6 presents
experimental results and analysis of the methodology and the tool. Finally, the conclusions and the future
work are depicted.

2 Methodology

This section presents the general overview and the motivation of the proposed methodology to automat-
ically produce formal models of PLC-based control systems for verification purposes.

2.1 Overview

The methodology relies on an intermediate model and a set of transformation tools to produce the input
models for different verification tools from the “non-formal world” of PLC control systems (see Fig. 1).

In the first step of the methodology, the ST code is parsed, building an Abstract Syntax Tree (AST)
which represents the syntax of the PLC code. This AST is transformed to a Control Flow Graph (CFG)
which represents the semantics of the code as an automata-based IM. The transformation uses the abstract
model of the PLC hardware to be able to represent the scan cycle. PLC programs are executed cyclically:
at the beginning of each cycle inputs are read and they keep their value during the cycle.



4 B. Fernández et al.

ST code
...
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    s1;
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... intermediate model
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  loc = s0 & !c: s2;
...

BIP model

UPPAAL model

...

Model checking

Simulation

reductions
abstractions /

Figure 1: Overview of our approach

The second step of the methodology consists in a transformation from the IM to the specific input lan-
guage of the verification tools. We designed the IM in a way to be semantically close to the model
representation of the different verification tools, therefore these transformations are relatively simple,
they just handle the differences of the input formats of the verification tools.

Finally, having these specific models, simulation and verification can be applied to the model of PLC
programs.

This paper is focusing on the definition of the IM, the transformation rules from ST code to the IM and
the transformation rules from the IM to different model checkers.

2.2 Motivation

Some obvious questions can be arisen after the brief introduction of our methodology. The rest of this
section is dedicated to answer them in order to introduce and justify our decisions.

Why introducing an intermediate model? There are multiple reasons to include an intermediate step
in our approach, including: (a) The transformation rules are split into two parts: “AST to CFG” trans-
formation from the ST code to the IM and “CFG to CFG” transformation from the IM to the different
model checker inputs. The “CFG to CFG” transformations are much more simple than the first ones.
By decoupling the transformations in two distinctive steps it allows to clearly separate the two roles of
the transformation by making them independent one from another (separation of concerns design ap-
proach). (b) This approach allows us to easily add new model checkers, if their input languages are
close to an automata-based formalism. (c) Abstraction techniques can be applied to the IM, therefore the
performance of the verification can be increased for all the model checkers included in the tool chain.

Why automaton-based intermediate model? Automata-based formalism is a simple formalism but
strong enough to model all the features of a PLC control system (Section 4 and 5 shows examples
of features in ST code modeled in this formalism). In addition, many verification tools use modeling
languages close to this idea, for example the selected tools in this methodology: NuSMV [9], UPPAAL
[1] and the BIP framework [3]. Therefore the transformation rules between the IM and the input of
NuSMV, UPPAAL, DFinder (from the BIP framework) or any other similar model checkers are simple
to implement and the methodology, as well as the tool, can be easily extended.

Why more than one model checker is needed? The existing verification tools provide different ad-
vantages and disadvantages in terms of performance, simulation facilities and properties specification.
Our goal is not to develop a new verification tool, therefore we wanted to compare them according to
this three features and provide the PLC developers the best alternative for our models. For instance,
up to now, NuSMV provides better results in terms of verification performance for our current models.
NuSMV also supports the full LTL and CTL for the specification properties but it lacks good simulation
facilities; UPPAAL provides very good simulation facilities but it supports only a subset of CTL; BIP



Automated Generation of Formal Models from ST Control Programs 5

provides a language for modeling component-based systems, code generation and simulation facilities.
From BIP, model-based automated testing can be applied, some results applied to PLC control systems
can be found in [13] and its verification tool for compositional verification (called DFinder) only supports
deadlock and safety properties. New and improved verification algorithms and tools are being developed
and they can be included here. This strategy makes the methodology independent of a single verification
tool.

How to avoid state space explosion in large PLC program models? Automata-based models of PLC
programs, as any software model for verification purposes, usually face the problem of huge state space.
Several abstraction and reduction techniques can be applied to the IM and all the specific model formats
can benefit from these techniques. While the reduction techniques applied to the IM are too complex to
be presented in detail in this paper, Section 6 gives an overview of the techniques applied. Readers may
refer to [11] for detailed description.

3 Automata-based formalism and its semantics

This section presents the automata-based formalism used as IM. First, the definition of the formalism is
presented and then its semantics is introduced.

3.1 Formalism

To represent the PLC programs, we use an automata-based formalism. Here we define a simple automata
network model, where independent automata can be defined and synchronized. The formalism presented
is similar to the network of timed automata formalism defined in [5], but without explicit logical clock
representation and with slightly different interaction (synchronization) semantics. The reason for not
using explicit logical clock representation is motivated by the fact that we want to apply the simplest
reasonably possible model as IM to make easier to transform the IM into different model checkers lan-
guage. The strategy for modeling the timing aspects of a PLC is referenced in Section 4.

A network of automata is a tuple N = (A, I), where A is a finite set of automata, I is a finite set of
interactions.

An automaton is a structure a = (L,T, l0,V,Val0) ∈ A, where L = {l0, l1, . . .} is a finite set of loca-
tions, T is a finite set of guarded (interactive) transitions, l0 ∈ L is the initial location of the auto-
maton, V = {v1, . . . ,vm} is the finite set of variables, the value domain for every variable v is Dv, and
Val0 = (Val1,0, . . . ,Valm,0) is the initial value of the variables (∀vi ∈V : Vali,0 ∈Dvi).

A state of an interactive automaton is a pair LVa = (l,Val), where l ∈ L is the current location and Val is
the vector of current values of each variable v ∈V (in a fixed order).

A transition is a tuple t = (l,g,amt, i, l′), where l ∈ L is the source location, g : (V →Dv)→ bool is the
guard, amt : (V →Dv)→ (V →Dv) is the memory change (variable assignment), i ∈ I∪{NONE} is an
interaction connected to the transition, and l′ ∈ L is the target location.

An interaction is a structure i = (t, t ′,amt), where t ∈ T and t ′ ∈ T ′ are two transitions in different
automata, and amt : (V →Dv)→ (V →Dv) is the memory change (variable assignment).

3.2 Semantics

The behaviour of this automata-based formalism can be easily explained as follows: when an automaton
is in location l and a transition t goes from l to l′, it is enabled if its guard g is satisfied and it has no
interactions (i = NONE). If this transition t occurs (fires), the location of the automaton will be l′ and
the variable assignments defined for t will be executed. The transitions joined by an interaction can only
fire together and only if both are enabled (synchronous composition).
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In the next paragraphs, the previous informally introduced semantics is presented in a formal way. For
that purpose, the product-automaton of our IM (with regards to the interactions) is represented as a state
transition system (STS).

A (finite) state transition system is a (SST S,s0,N ) tuple, where SST S is a finite set of states, s0 ⊆ SST S is
a set of initial states, N ⊆ SST S×SST S is a relation over SST S which describes the possible state changes
i.e. transitions. In the following, a transition from state s to s′ will be marked as s→ s′ to improve
readability.

Let N = (A, I) be an interactive automata network (where A = {a1, . . . ,an}). The semantics of this
automata network can be defined as a state transition system (SST S,s0,N ), where SST S is the set of
states LVa1 × ·· · × LVan , and s0 = (l0,1,Val0,1 . . . , l0,n,Val0,n) is the initial state. The set of transitions
N ⊆ SST S×SST S is constructed in the following way:

– For every transition t = (l,g,amt, int, l′) ∈ T in an automaton ai, where int = NONE, for every
(Val,Val∗) ∈ amt: if g(Val) = true, then add:

(lv1, . . . , lvi−1,(l,Val), lvi+1, . . . , lvn)→ (lv1, . . . , lvi−1,(l′,Val∗), lvi+1, . . . , lvn)

(∀lv j ∈ LVA j , where j 6= i).

– For every transition t = (l,g,amt, int,k) ∈ T in automaton ai, where int = (t, t ′, iamt) and t ′ =
(l′,g′,amt ′, int,k′) in automaton a j, for every (Val,Val∗) ∈ amt, for every (Val′,Val∗′) ∈ amt ′, for
every (Val∗,Val∗∗) ∈ iamt, and for every (Val∗′,Val∗∗′) ∈ iamt: if g(Val) = true and g′(Val′) =
true, then add:

(lv1, . . . , lvi−1,(l,Val), . . . ,(l′,Val′), lv j+1, . . .)→ (lv1, . . . , lvi−1,(k,Val∗∗), . . . ,(k′,Val∗∗′), lv j+1, . . .)

(∀lvx ∈ LVAx , where x 6= i and x 6= j).

An example of this approach to describe the automata semantics as STS is shown in Fig. 2.

a := TRUE

interaction i

automaton A

a := FALSE

a := FALSE

b := NOT b

p0
interaction i

automaton B

b := FALSE

s0

s1

s2

STS corresponding to A and B

(s0, false, p0, false)

(s1, true, p0, false)

(s2, true, p0, true)

(s0, false, p0, true)

(s1, true, p0, true)

(s2, true, p0, false)

Figure 2: Example of representing interactive an automata network as a state transition system (STS)
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4 Transformation from ST to automata

This section presents the “AST to CFG” transformation rules between the ST code and the IM. ST is
a high-level programming language comprising a list of statements. A statement can be considered as
the smallest standalone element of a program and it can contain other components (e.g. expressions).
There are different kinds of statements like conditional branches, loops, variable assignments and calls
to subroutines. An expression is a group of symbols that represents a value.

For every statement stmt, let n(stmt) be the next statement after stmt. As we model cyclic PLC programs,
the last statement in the ST code is followed by the first one. Furthermore, for a statement list sl let
first(sl) be the first statement of the list.

The general representation of the ST program in our automata-based formalism is as follows:

Rule PLC1 For every ST function block instance fb, there is exactly one automaton in the model, which
is denoted as FFB(fb).

Rule PLC2 For every ST statement stmt in function block instance fb, there is at least one corresponding
location marked as FS(stmt) in the automaton FFB(fb).

Rule PLC3 For every ST variable v in function block instance fb, there is exactly one corresponding
variable FV (v) in the automaton FFB(fb).

We add also statement-specific parts to the automata. Here we present the rules corresponding to variable
assignments, conditional statements and function calls. These rules are illustrated on Fig. 3.

Rule PLC4 For every variable assignment stmt = 〈vi := Expr〉 in function block instance fb, we add a
transition to FFB(fb) which goes from FS(stmt) to FS(n(stmt)) which has no guard and no interaction,
and it assigns Expr to the variable FV (vi) and does not modify the other variables. (Formally: t =
(FS(stmt),TRUE,a,NONE,FS(n(stmt))), where assignment a assigns Expr to the variable FV (vi) and
does not modify the other variables.)

Rule PLC5 For every conditional statement stmt = 〈IF c THEN sl1 ELSE sl2 END IF〉 in function block
instance fb, we add two transitions (t1 and t2) to automaton FFB(fb):

– The transition t1 goes from FS(stmt) to FS(first(sl1)), it has no assignments and no interactions,
and it has a guard c. (Formally: t1 = (FS(stmt),c,aidentity,NONE,FS(first(sl1))))

– The transition t2 goes from FS(stmt) to FS(first(sl2)), it has no assignments and no interactions,
and it has a guard NOT c. (Formally: t2 = (FS(stmt),NOT c,aidentity,NONE,FS(first(sl2))))

Rule PLC6 For every function call stmt = 〈r := Func(p1 := Expr1, p2 := Expr2, . . .)〉 in function block
instance fb, we add the following elements:

– A new location lwait is added to FFB(fb). It represents the state when fb is waiting for the end of
the function call. (For every function call, we add a separate lwait location.)

– A transition t1 is added to FFB(fb), which has no assignment, no guard and goes from FS(stmt) to
lwait.

– A transition t2 is added to FFB(fb), which has no assignment, no guard and goes from lwait to
FS(n(stmt)).

– An interaction i1 is added to the automata network. It connects transition t1 with the first transition
of FFB(Func) and assigns the function call parameters to the corresponding variables in FFB(Func).
(It assigns Expr1 to FV (p1), etc.)
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t1
/v1 := Expr

FS(stmt)

FS(n(stmt))

(a) Corresponding auto-
maton fragment for variable
assignment v1 := Expr

t2
[NOT c]

FS(stmt)

FS(first(sl2))FS(first(sl1))

t1
[c]

(b) Corresponding automaton frag-
ment for conditional statement
IF c THEN sl1 ELSE sl2 END IF

t1
interaction i1

FS(stmt)

lwait

t2
interaction i2

FS(n(stmt))

interaction i1

initial state

interaction i2

last state

. . .

caller automaton called automaton

(end of cycle)

(c) Corresponding automaton fragment for
function call r := Func(p1 := Expr1, p2 :=
Expr2, . . .)

Figure 3: Transformation rules from ST code to automata

– An interaction i2 is added to the automata network. It connects the last transition (which goes to
the initial state) of FFB(Func) with transition t2 and assigns the return values of the function call to
the corresponding variable (variable FV (r)) in FFB(fb). It also assigns the corresponding values to
the output variables.

In addition to these rules, PLC code often contains timers and modeling these timing aspects is a chal-
lenging task and it highly increases the state space of the models. We have described the modeling of
timers in [12]. In this paper, however, we concentrate on our general modeling methodology.

Finally, this transformation does not support recursive function calls. However, according to IEC 61131
standard, functions “shall not be recursive” [17].

5 Transformation from IM to specific tools

This section explains some relevant examples of the “CFG to CFG” transformations from the IM to the
specific input language of the selected model checkers.

We developed transformation rules from IM to the input model language of NuSMV, BIP and UPPAAL.
The three transformations are similar and as a matter of illustration, only the transformation from IM
into NuSMV is presented.

Rule PLC1 For the automata network, a new module main is created. This will contain all the auto-
maton instances. It contains also a variable interaction, whose domain is the set of possible interactions
in the automata network (I = {i1, i2, . . .}) and the value NONE. This variable and the main module are
passed as parameters to every module instance to be able to access them.

Rule PLC2 For every automaton a, a new module a is created in the NuSMV model with one single in-
stance inst a. This module will contain a variable loc which stores the current location of the automaton.
The domain of this variable is the set of possible locations in automaton a (i.e., L = {l0, l1, . . .}). The
default value of the variable loc will be the initial location l0. The corresponding NuSMV code fragment
can be seen on Fig. 4.

Rule PLC3 For every variable v in automaton a, a new variable v is created in the NuSMV model a.
Each variable will have a next-value assignment statement in the assignment block of the module. If a
variable is not modified by an assignment explicitly, it will keep its value, as it can be seen on Fig. 6.



Automated Generation of Formal Models from ST Control Programs 9

MODULE a(main, interaction)
VAR

loc : {l0, l1, l2, ...};
...

ASSIGN
init(loc) := l0;
...

MODULE main
VAR

inst_a : a(self, interaction);

Figure 4: Representation of automaton a in NuSMV

Rule PLC4 For every transition t = (l1,g,amt, i, l2) in automaton a, a new assignment rule is added for
the corresponding loc variable. It will express that if the current location is l1, the next location will be
l2, if guard g is true and interaction i is enabled. If there is no interaction or guard connected to transition
t, the corresponding condition can be omitted. This transformation can be seen on Fig. 5.

If the transition t contains variable assignment v := Expr for variable v, the next-value assignment cor-
responding to v is extended too, as it can be seen on Fig. 6.

Rule PLC5 For each interaction i1 connecting transition t1 which goes from location l1 in automaton a
and transition t2 with source l2 in automaton b, an invariant is added to the model, as it can be seen on
Fig. 7.

[g]
int. i1

l1

l2

next(loc) := case
...
loc = l1 & g &

interaction = i1 :
l2;

...
esac;

Figure 5: Representation of transition t = (l1,g,amt, i, l2)

[g]
int. i1

l1

l2

next(v) := case
...
loc = l1 & g &

interaction = i1 :
Expr;

...
TRUE : v;

esac;

v := Expr

Figure 6: Representation of variable assignment v := Expr

t1

int. i1

l1

automaton a automaton b

t2

int. i1

l2

INVAR (interaction =
i1 <-> (inst a.loc =
l1 & inst b.loc = l2 &
g1 & g2));

[g1] [g2]

Figure 7: Invariant representing interaction i1

Figure 8 shows an example of a small ST code, the corresponding IM and NuSMV code. The ST
code contains a single function block which implements a counter without any function calls. The
corresponding IM have a single automaton with no interactions. The NuSMV model generated from IM
contains two modules: the module main for the network and the module counter for the single automaton.
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27DDDDDDDesac;
28DDDDDDDinit(CNTRiDf=D}sdS]_};
29DDDDDDDnext(CNTRiDf=Dcase
30DDDDDDDDDlocD=DlSDfD(CNTRDmD}sdS]_Si;
31DDDDDDDDDlocD=DlwDfD}sdS]_};
32DDDDDDDDDTRUEDfDCNTR;
33DDDDDDDesac;DD
34DDDMODULEDmain
35DDDDDVAR
36DDDDDDDinteractionDfD{NONE};
37DDDDDDDinst_counterDfD
38DDDDDDDDDDDCOUNTER(interaction)Dselfi;
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Figure 8: Example ST code, the corresponding IM and the corresponding NuSMV code

The representation of statements can be also observed on this simple case. For example, in line 11 of
the ST code, the variable cntr is incremented if the condition enabled is true. In the IM this statement
is represented as a transition between l1 and l2. In the NuSMV model, the transition is represented
by two lines of code: line 14 expresses the modification of the location variable, line 30 describes the
modification of the variable cntr.

6 Experimental results and analysis

This section presents the tool supporting the methodology as well as its application on a real case study.

6.1 Implementation

A transformation tool supporting the presented methodology has been developed using EMF (Eclipse
Modeling Framework) and Xtext technologies. The tool implements the relevant parts of the ST grammar
and the automata-based IM as an EMF metamodel. The transformation rules have been implemented
using Xtend and Java. The tool generates NuSMV, BIP and UPPAAL models from the ST source code.

Models of real-life programs with a significant number of variables, functions, etc. often have huge state
spaces. To address this problem, we apply reduction techniques at the IM level. Thus, all final models
benefit from them. This is not in the scope of this paper and the details of the reduction techniques can
be found in [11]. However we briefly introduce the applied techniques to support the results. Two types
of reductions have been implemented:

– General rule-based reductions are used to simplify the models. These reductions can be used
for every kind of PLC code. For example, variable assignments on succeeding transitions can be
merged if they are not affecting each other, because the value of the variables are not checked
during the execution of the PLC cycle. More than 20 rules have been introduced to simplify and
reduce the model. These reductions are applied iteratively.
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– When the property to verify is provided, we apply the Cone of Influence (COI) reduction [10],
which consists in removing all variables that do not affect the property. As it is depending on
the requirement to be checked, its effect on the size of the state space highly varies, but for many
examples, we observe a large state space reduction.

6.2 Applicability

PLC control systems developed with the UNICOS framework [15] are used as case study. UNICOS
contains a library of base objects representing common industrial control instrumentation (e.g. sensors,
actuators, subsystems). These objects are represented as function blocks in the PLC code, using the ST
language and can invoke different function blocks on the PLC. Specifically the case study uses the ST
code targeting Siemens PLCs.

Intermediate model
without reductions

with general reductions

with reductions and COI

242 variables, 9 automata,
323 locations

204 variables, 4 automata,
140 locations

85 variables, 1 automaton,
47 locations

NuSMV / UPPAAL / BIP models
252 variables,
size of PSS: 5.21 ·10218

NuSMV / UPPAAL / BIP models
209 variables,
size of PSS: 3.79 ·10204

NuSMV / UPPAAL / BIP models
86 variables,
PSS: 4.54 ·1026, RSS: 4.83 ·1024

ST code

418 statements,
31 function calls,

3 function declarations,

167 variables (of which 32 complex,
like integer, time, real, array, etc.)

820 lines of code

2 additional function blocks,
1 main function block,

Figure 9: Measurements for the OnOff UNICOS object

As an example for this paper, the OnOff object has been chosen. This object can represent any binary-
like process equipment (actuators) driven by digital signals (e.g. valves, heaters, motors, etc.). This is
not the most complex module in the UNICOS library, but its size and complexity are representative (60
input and 62 output variables). Generation and reduction time together of the NuSMV, BIP or UPPAAL
models is under 1 seconds.

Fig. 9 shows some key metrics for the OnOff UNICOS object. As it can be seen, the ST code contains a
significant number of statements and variables of different nature. The corresponding IM and generated
models have a huge potential state space (PSS) before reductions. After applying general reductions and
COI the size of the models were reduced significantly. Note that the COI reduction depends on the given
requirement. In this case, the requirement was a safety property containing 9 variables depending on 79
other variables. The final reduction of the PSS was from 5.21 ·10218 states to 4.54 ·1026, while the size of
the reachable state space (RSS) became 4.83 ·1024. The final model was reduced enough for verification
and simulation using NuSMV, UPPAAL and BIP, showing the necessity of our work. A case study with
verification results of complex properties can be found in [14].

7 Conclusion and future Work

The paper presents an approach to create formal models of ST PLC programs for verification purposes.
The proposed methodology is generic and can be widely applied to ST PLC programs. We implemented
the proposed transformations in an automatic generation tool based on EMF metamodels. Currently this
tool produces formal models for NuSMV, UPPAAL and BIP from ST code.

The results showed that it is possible to represent ST code with an automaton-based formalism. It
has been also shown that an intermediate model can make the transformation simpler, and it facilitates
to extend the approach for other IEC 61131 input languages or model formalisms. In the proposed
methodology, various abstraction and reduction techniques can be applied to reduce the state space,
allowing the verification of the generated models.
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Currently the tool does not support all the software blocks provided by the PLC operating system (e.g.
built-in function blocks), as their ST source code is not available. The transformation tool does not take
into account anything that is not defined in the given source code, except some general assumptions about
PLCs, like the cyclic behaviour or time representation.

Future plans for this project are the integration of the tool and methodology in the UNICOS development
process at CERN. In addition, extending and optimizing the abstraction techniques and the proof of the
transformation to guarantee its correctness, are ongoing work.
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